摘要:The camber and cornering properties of the tire directly affect the handling stability of vehicles, especially in emergencies such as high-speed cornering and obstacle avoidance. The structural and load-bearing mode of non-pneumatic mechanical elastic (ME) wheel determine that the mechanical properties of ME wheel will change when different combinations of hinge length and distribution number are adopted. The camber and cornering properties of ME wheel with different hinge lengths and distributions were studied by combining finite element method (FEM) with neural network theory. A ME wheel back propagation (BP) neural network model was established, and the additional momentum method and adaptive learning rate method were utilized to improve BP algorithm. The learning ability and generalization ability of the network model were verified by comparing the output values with the actual input values. The camber and cornering properties of ME wheel were analyzed when the hinge length and distribution changed. The results showed the variation of lateral force and aligning torque of different wheel structures under the combined conditions, and also provided guidance for the matching of wheel and vehicle performance.
关键词:Non-pneumatic tire; camber and cornering properties; finite element model; neural network; generalization ability