首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Bayesian Estimation and Prediction Based on Progressively First Failure Censored Scheme from a Mixture of Weibull and Lomax Distributions
  • 本地全文:下载
  • 作者:Mohamed M. Mahmoud ; Manal Mohamed Nassar ; Marwa Ahmed Aefa
  • 期刊名称:Pakistan Journal of Statistics and Operation Research
  • 印刷版ISSN:2220-5810
  • 出版年度:2020
  • 卷号:16
  • 期号:2
  • 页码:357-372
  • DOI:10.18187/pjsor.v16i2.2442
  • 语种:English
  • 出版社:College of Statistical and Actuarial Sciences
  • 摘要:This paper develops Bayesian estimation and prediction, for a mixture of Weibull and Lomax distributions, in the context of the new life test plan called progressive first failure censored samples. Maximum likelihood  estimation and Bayes estimation, under informative and non-informative priors, are obtained using Markov Chain Monte Carlo methods, based on the symmetric square error Loss function and the asymmetric linear exponential (LINEX) and general entropy loss functions. The maximum likelihood estimates and the different Bayes estimates are compared via a Monte Carlo simulation study. Finally, Bayesian prediction intervals for future observations are obtained using a numerical example.
  • 关键词:Mixture model;Progressive First Failure Censored Scheme;Loss Function;Maximum Likelihood Estimation;Bayesian Estimation and Prediction;Markov Chain Monte Carlo
国家哲学社会科学文献中心版权所有