摘要:Cities are regarded as the main areas for conducting strategies for energy sustainability and climate adaptation, specifically in the world’s top energy consumer—China. To uncover dynamic features and main drivers for the city-level energy consumption, a comprehensive and systematic city-level total energy consumption accounting approach was established and applied in China’s megacity, which has the highest industrial electricity consumption. Compared with previous studies, this study systematically analyzes drivers for energy consumption based on industrial and residential perspectives. Additionally, this study analyzes not only the mechanisms by which population size, economic growth, and energy intensity affect energy consumption but also the effects of population and industry structural factors. According to the extended Logarithmic mean Divisia index (LMDI) method, the main conclusions drawn from this research are as follows: (1) The total energy consumption of Suzhou presented an overall increasing trend, with 2006–2012 as a rapid growth stage and 2013–2016 as a moderate growth stage. (2) The energy consumption structure was mainly dominated by coal, which was followed by outsourced electricity and natural gas. (3) Scale-related factors have dominated changes in energy consumption, and structural and technological factors have had profound effects on energy consumption in different development periods. (4) Population size and economic output were the main drivers for increments in industrial energy consumption, whereas energy intensity and economic structure performed the important curbing effects. The income effect of urban residents was the biggest driver behind the increase in residential energy consumption, whereas energy intensity was the main limiter. These findings provide a scientific basis for an in-depth understanding of the determinants of the evolution of urban energy consumption in China’s megacity, including similar cities or urban areas in the developing world.