首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Frequency Tunability and Slow-Wave Characteristics of a High-Efficiency Ridged MILO
  • 本地全文:下载
  • 作者:Xiaoyu Wang ; Baoping Yang ; Xu Xu
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2020
  • 卷号:08
  • 期号:12
  • 页码:91-101
  • DOI:10.4236/jcc.2020.812009
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:A high-efficiency ridged magnetically insulated transmission line oscillator (RMILO) is proposed and investigated theoretically and numerically in this paper. In the RMILO, ridge-disk vanes are introduced to enhance the power efficiency. Theoretical investigation shows that the ridge-disk can enhance the coupling impedance of the slow-wave structure (SWS), and so enhance the power efficiency. Moreover, the ridge has a weak influence on frequency, so, it influences little on the tunability of the MILO. In simulation, when the applied voltage is increased to 807 kV, the RMILO can get the 3 dB tunable frequency range with 7.6 - 13.9 GHz and the 3 dB tuning bandwidth with 58.6% which has an increase of 27.6% compared with the conventional MILO. So, the tuning performance of the RMILO is more superior. Besides, the RMILO gets the maximum output power of 7.1 GW, the corresponding power efficiency is 22.6% and the frequency is 1.400 GHz. Furthermore, when the applied voltage is increased to 807 kV, high-power microwave with a power of 13.5 GW, frequency of 1.400 GHz, and ef?ciency of 24.5% is generated, which has an increase of 20.2% compared with the conventional MILO. The simulation results con?rm the ones predicted by theoretical analysis.
  • 关键词:Magnetically Insulated Transmission Line Oscillator;Slow Wave Structure;High Conversion Efficiency
国家哲学社会科学文献中心版权所有