首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Enterprise Financial Early Warning Based on Lasso Regression Screening Variables
  • 本地全文:下载
  • 作者:Xi Nie ; Guangming Deng
  • 期刊名称:Journal of Financial Risk Management
  • 印刷版ISSN:2167-9533
  • 电子版ISSN:2167-9541
  • 出版年度:2020
  • 卷号:09
  • 期号:04
  • 页码:454-461
  • DOI:10.4236/jfrm.2020.94024
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:The construction of an enterprise financial warning model is very important for a listed company, and this paper uses the financial data of 2819 listed enterprises as a sample, uses the lasso method for model index screening and uses a variety of classical classification methods and machine learning methods to build the model and analyze its discriminating effect. The results show that the lasso method can effectively reduce the multicollinearity between variables while reducing dimensionality and the classification effect of machine learning method is better than the classical classification method.
  • 关键词:Financial Early Warning;Lasso Regression;Variable Selection
国家哲学社会科学文献中心版权所有