首页    期刊浏览 2026年01月02日 星期五
登录注册

文章基本信息

  • 标题:A Unified Stochastic Volatility—Stochastic Correlation Model
  • 本地全文:下载
  • 作者:Xiang Lu ; Gunter Meissner ; Hong Sherwin
  • 期刊名称:Journal of Mathematical Finance
  • 印刷版ISSN:2162-2434
  • 电子版ISSN:2162-2442
  • 出版年度:2020
  • 卷号:10
  • 期号:04
  • 页码:679-696
  • DOI:10.4236/jmf.2020.104039
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:This paper has two main contributions. First, we build a simple but rigorous stochastic volatility—stochastic correlation model. Mean-reverting and locally stochastic with dependent Brownian motions, our model proves to fit both marginal and joint distributions of the option market implied volatility and correlation. Second, asset correlations are currently modeled exogenously and then ad hoc assigned to an asset price process such as the Geometric Brownian Motion (GBM). This is conceptually and mathematically unsatisfying. We apply our approach to build a unified asset price—asset correlation model, which outperforms the standard GBM significantly.
  • 关键词:Stochastic Volatility;Stochastic Correlation;Chan-Karolyi-Longstaff-Sanders (CKLS) Process;Constant Elasticity of Variance (CEV);Jacobi Process
国家哲学社会科学文献中心版权所有