首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Concept Lattice-Based Classification in NLP
  • 本地全文:下载
  • 作者:László Kovács
  • 期刊名称:Proceedings
  • 电子版ISSN:2504-3900
  • 出版年度:2020
  • 卷号:54
  • 期号:40
  • 页码:48
  • DOI:10.3390/proceedings2020063048
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:Classification in discrete object space is a widely used machine learning technique. In this case, we can construct a rule set using attribute level implication rules. In this paper, we apply the technique of formal concept analysis to generate the rule base of the classification. This approach is suitable for cases where the number of possible attribute subsets is limited. For testing of this approach, we investigated the problem of the part of speech prediction in natural language texts. The proposed model provides a better accuracy and execution cost than the baseline back-propagation neural network method.
国家哲学社会科学文献中心版权所有