摘要:We present the kinematic model of the ship wake in the presence of horizontal subsurface current linearly varying with the depth of water. An extension of the Whitham–Lighthill theory for calm water is developed. It has been established that the structure of ship waves under the action of a shear flow can radically differ from the classical Kelvin ship wake model. Co propagating ship and shear current lead to increasing the total wedge angle up to full one 180° and decreases for the counter shear current. At relatively large unidirectional values of the shear current, cusp waves in the vicinity of the wedge boundary are represented by transverse waves and, conversely, by diverging waves directed almost perpendicular to the ship track for the opposite shear current. The presence of a shear flow crossing the direction of the ship’s movement gives a strong asymmetry of the wake. An increase in the perpendicular shear flow leads to an increase in the difference between the angles of the wake arms. The limiting value of the shear current corresponds to one or both arms angles equal to 90°. Transverse and divergent edge waves for this limiting case coincide.