首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Data-Driven Epidemic Intelligence Strategies Based on Digital Proximity Tracing Technologies in the Fight against COVID-19 in Cities
  • 本地全文:下载
  • 作者:Dario Esposito ; Giovanni Dipierro ; Alberico Sonnessa
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:2
  • 页码:644
  • DOI:10.3390/su13020644
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:In a modern pandemic outbreak, where collective threats require global strategies and local operational defence applications, data-driven solutions for infection tracing and forecasting epidemic trends are crucial to achieve sustainable and socially resilient cities. Indeed, the need for monitoring, containing, and mitigating the ongoing COVID-19 pandemic has generated a great deal of interest in Digital Proximity Tracing Technology (DPTT) on smartphones, as well as their function and effectiveness and insights of population acceptance. This paper introduces and compares different Data-Driven Epidemic Intelligence Strategies (DDEIS) developed on DPTTs. It aims to clarify to what extent DDEIS could be effective and both technologically and socially suitable in reaching the objective of a swift return to normality for cities, guaranteeing public health safety and minimizing the risk of epidemic resurgence. It assesses key advantages and limits in supporting both individual decision-making and policy-making, considering the role of human behaviour. Specifically, an online survey carried out in Italy revealed user preferences for DPTTs and provided preliminary data for an SEIR (Susceptible–Exposed–Infectious–Recovered) epidemiological model. This was developed to evaluate the impact of DDEIS on COVID-19 spread dynamics, and results are presented together with an evaluation of potential drawbacks.
国家哲学社会科学文献中心版权所有