首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:On Dantzig and Lasso estimators of the drift in a high dimensional Ornstein-Uhlenbeck model
  • 本地全文:下载
  • 作者:Gabriela Ciołek ; Dmytro Marushkevych ; Mark Podolskij
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:2
  • 页码:4395-4420
  • DOI:10.1214/20-EJS1775
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:In this paper we present new theoretical results for the Dantzig and Lasso estimators of the drift in a high dimensional Ornstein-Uhlenbeck model under sparsity constraints. Our focus is on oracle inequalities for both estimators and error bounds with respect to several norms. In the context of the Lasso estimator our paper is strongly related to [11], where the same problem was investigated under row sparsity. We improve their rates and also prove the restricted eigenvalue property solely under ergodicity assumption on the model. Finally, we demonstrate a numerical analysis to uncover the finite sample performance of the Dantzig and Lasso estimators.
  • 关键词:Dantzig estimator;high dimensional statistics;Lasso;Ornstein-Uhlenbeck process;parametric estimation
国家哲学社会科学文献中心版权所有