首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Estimation of extreme quantiles from heavy-tailed distributions in a location-dispersion regression model
  • 本地全文:下载
  • 作者:Aboubacrène Ag Ahmad ; El Hadji Deme ; Aliou Diop
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2020
  • 卷号:14
  • 期号:2
  • 页码:4421-4456
  • DOI:10.1214/20-EJS1779
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We consider a location-dispersion regression model for heavy-tailed distributions when the multidimensional covariate is deterministic. In a first step, nonparametric estimators of the regression and dispersion functions are introduced. This permits, in a second step, to derive an estimator of the conditional extreme-value index computed on the residuals. Finally, a plug-in estimator of extreme conditional quantiles is built using these two preliminary steps. It is shown that the resulting semi-parametric estimator is asymptotically Gaussian and may benefit from the same rate of convergence as in the unconditional situation. Its finite sample properties are illustrated both on simulated and real tsunami data.
  • 关键词:Semi-parametric estimation;regression and dispersion functions;tail-index;extreme conditional quantile
国家哲学社会科学文献中心版权所有