首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Non-steady diffusion and adsorption of organic micropollutants in ion-exchange membranes: effect of the membrane thickness
  • 本地全文:下载
  • 作者:Malgorzata Roman ; Pawel Roman ; Rhea Verbeke
  • 期刊名称:iScience
  • 印刷版ISSN:2589-0042
  • 出版年度:2021
  • 卷号:24
  • 期号:2
  • 页码:1-33
  • DOI:10.1016/j.isci.2021.102095
  • 语种:English
  • 出版社:Elsevier
  • 摘要:SummaryThere is no efficient wastewater treatment solution for removing organic micropollutants (OMPs), which, therefore, are continuously introduced to the Earth's surface waters. This creates a severe risk to aquatic ecosystems and human health. In emerging water treatment processes based on ion-exchange membranes (IEM), transport of OMPs through membranes remains unknown. We performed a comprehensive investigation of the OMP transport through a single IEM under non-steady-state conditions. For the first time, positron annihilation lifetime spectroscopy was used to study differences in the free volume element radius between anion- and cation-exchange membranes, and between their thicknesses. The dynamic diffusion-adsorption model was used to calculate the adsorption and diffusion coefficients of OMPs. Remarkably, diffusion coefficients increased with the membrane thickness, where its surface resistance was more evident in thinner membranes. Presented results will contribute to the improved design of next-generation IEMs with higher selectivity toward multiple types of organic compounds.Graphical AbstractDisplay OmittedHighlights•Electroneutrality overcomes diffusive potential of charged OMPs•The interactions between OMPs and the IEMs determine OMP transport•Adsorption influences diffusion lag time of neutral OMPs•Diffusion coefficients of neutral OMPs increased with IEMs thicknessChemistry; environmental chemical engineering; environmental science; chemical engineering
国家哲学社会科学文献中心版权所有