首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Research on Runoff Simulations Using Deep-Learning Methods
  • 本地全文:下载
  • 作者:Yan Liu ; Ting Zhang ; Aiqing Kang
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:3
  • 页码:1336
  • DOI:10.3390/su13031336
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Runoff simulations are of great significance to the planning management of water resources. Here, we discussed the influence of the model component, model parameters and model input on runoff modeling, taking Hanjiang River Basin as the research area. Convolution kernel and attention mechanism were introduced into an LSTM network, and a new data-driven model Conv-TALSTM was developed. The model parameters were analyzed based on the Conv-TALSTM, and the results suggested that the optimal parameters were greatly affected by the correlation between the input data and output data. We compared the performance of Conv-TALSTM and variant models (TALSTM, Conv-LSTM, LSTM), and found that Conv-TALSTM can reproduce high flow more accurately. Moreover, the results were comparable when the model was trained with meteorological or hydrological variables, whereas the peak values with hydrological data were closer to the observations. When the two datasets were combined, the performance of the model was better. Additionally, Conv-TALSTM was also compared with an ANN (artificial neural network) and Wetspa (a distributed model for Water and Energy Transfer between Soil, Plants and Atmosphere), which verified the advantages of Conv-TALSTM in peak simulations. This study provides a direction for improving the accuracy, simplifying model structure and shortening calculation time in runoff simulations.
国家哲学社会科学文献中心版权所有