摘要:Construction sites are considered as complicated work environments. Various concurrent activities may overlap apropos to time and workspace, predisposing them to spatial–temporal exposure and repetitive accidents. Detecting the characteristics of repetitive accidents before the construction stage contributes to prevent injuries and fatalities caused by spatial—temporal conditions at construction job sites. To resolve this problem, this study proposes a novel hazard identification approach through spatial–temporal exposure analysis called HISTEA, which integrated scenario analysis of accident cases into 4D building information modeling (BIM). The proposed approach consists of three modules: (1) spatial–temporal hazard investigation (SHI) to analyze the accident cases and develop the hazard database of the spatial–temporal overlap condition of pair-wise activities; (2) spatial–temporal condition identification (SCI) to determine the conflict among different activities, considering the workspace and time overlap from the 4D BIM model; and (3) safety information integration (SII) to deliver safety knowledge to the project team through a web-based application. To illustrate and validate this approach, a HISTEA prototype for foundation work has been developed to be used at the pre-construction stage. The developed prototype is based on the analysis of 496 accident reports extracted from the integrated management information system (IMIS) of the Occupational Safety and Health Administration for the SHI module database. The proposed approach is expected to proactively aid project teams in detecting hazards that ultimately reduce repetitive accidents caused by overlapping activities.