首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Source Apportionment and Ecological Risk Assessment of Potentially Toxic Elements in Cultivated Soils of Xiangzhou, China: A Combined Approach of Geographic Information System and Random Forest
  • 本地全文:下载
  • 作者:He Huang ; Yong Zhou ; Yu-Jie Liu
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:3
  • 页码:1214
  • DOI:10.3390/su13031214
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:Soil is both an important sink and a source for contaminants in the agricultural ecosystem. To research the sources and ecological risk of potentially toxic elements in Xiangzhou, China, 326 soil samples from arable land were collected and analyzed for five potentially toxic elements: cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), and chromium (Cr). In this research, ecological risk assessment was used to determine the degree of contamination in the research area, the outcome of the Geographic Information System was as used to study the spatial distribution characteristics of potentially toxic elements, and random forest was used to evaluate the natural and artificial influencing factors. We surveyed the sources of potentially toxic elements through quantifying the indicators, which gave further opinions. The results were as follows: (1) The average contents of potentially toxic elements were 0.14 mg/kg (Cd), 0.05 mg/kg (Hg), 12.33 mg/kg (As), 28.39 mg/kg (Pb), and 75.21 mg/kg (Cr), respectively. The results compared with the background value of Hubei, neighboring regions, and countries for Cd, As, Pb, and Cr showed mild pollution. (2) The total evaluation of soil pollution via the comprehensive pollution index indicated slight contamination by Cd. Assessment by the potential ecological risk index indicated low ecological risk due to Cd and moderate contamination by Hg. Evaluation through the geo-accumulation index evinced the low ecological risk for Cd, As, and Pb and moderate contamination by Hg. (3) We found that in addition to natural factors (such as soil parent material, soil pH, etc.), long-term industrial pollution, mineral mining and processing, exhaust emissions from transportation, the application of manure from farms as farmyard manure, and sewage irrigation were the primary anthropogenic sources of potentially toxic element contamination in the soil.
国家哲学社会科学文献中心版权所有