摘要:Low cost and high reproducible is a key issue for sustainable location-based services. Currently, Wi-Fi fingerprinting based indoor positioning technology has been widely used in various applications due to the advantage of existing wireless network infrastructures and high positioning accuracy. However, the collection and construction of signal radio map (a basis for Wi-Fi fingerprinting-based localization) is a labor-intensive and time-cost work, which limit their practical and sustainable use. In this study, an indoor signal mapping approach is proposed, which extracts fingerprints from unknown signal mapping routes to construct the radio map. This approach employs special indoor spatial structures (termed as structure landmarks) to estimate the location of fingerprints extracted from mapping routes. A learning-based classification model is designed to recognize the structure landmarks along a mapping route based on visual and inertial data. A landmark-based map matching algorithm is also developed to attach the recognized landmarks to a map and to recover the location of the mapping route without knowing its initial location. Experiment results showed that the accuracy of landmark recognition model is higher than 90%. The average matching accuracy and location error of signal mapping routes is 96% and 1.2 m, respectively. By using the constructed signal radio map, the indoor localization error of two algorithms can reach an accuracy of 1.6 m.