首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Bootstrap estimators for the tail-index and for the count statistics of graphex processes
  • 本地全文:下载
  • 作者:Zacharie Naulet ; Daniel M Roy ; Ekansh Sharma
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2021
  • 卷号:15
  • 期号:1
  • 页码:282-325
  • DOI:10.1214/20-EJS1789
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Graphex processes resolve some pathologies in traditional random graph models, notably, providing models that are both projective and allow sparsity. Most of the literature on graphex processes study them from a probabilistic point of view. Techniques for inferring the parameter of these processes – the so-called graphon – are still marginal; exceptions are a few papers considering parametric families of graphons. Nonparametric estimation remains unconsidered. In this paper, we propose estimators for a selected choice of functionals of the graphon. Our estimators originate from the subsampling theory for graphex processes, hence can be seen as a form of bootstrap procedure.
  • 关键词:Graphex processes;sparse random graphs;tail-index;estimation;count statistics;bootstrap
国家哲学社会科学文献中心版权所有