首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Single and Multiple Imputation Method to Replace Missing Values in Air Pollution Datasets: A Review
  • 本地全文:下载
  • 作者:Zuraira Libasin ; Ahmad Zia Ul-Saufie ; Hasfazilah Ahmat
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2020
  • 卷号:616
  • 期号:1
  • DOI:10.1088/1755-1315/616/1/012002
  • 语种:English
  • 出版社:IOP Publishing
  • 摘要:Imputation plays an essential role in handling the issue of missing data. The conventional techniques applied to overcome this problem are single imputation (SI) and multiple imputations (MI). These statistical strategies have their strengths and limitations in replacing missing data. This article reviews the state of the art of imputation methods employed in general publications in replacing missing values for air pollution data. A comprehensive review of the literature identifies the use of SI and MI slightly increases over the year. This paper concludes on the trend and the approaches used in the imputation methods. Subsequently, this paper put forward the gaps in imputation technique that less utilized a machine-learning approach in providing a substitute for missing values in air pollution data. The future direction of the research is to extend more machine-learning approach with higher accuracy with higher performance in imputing missing values.
国家哲学社会科学文献中心版权所有