摘要:The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many investigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a heavy-tailed distribution is discussed when some functional random covariate (i.e. valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.