摘要:We consider the efficacy of a proposed linear-dimension-reduction method to potentially increase the powers of five hypothesis tests for the difference of two high-dimensional multivariate-normal population-mean vectors with the assumption of homoscedastic covariance matrices. We use Monte Carlo simulations to contrast the empirical powers of the five high-dimensional tests by using both the original data and dimension-reduced data. From the Monte Carlo simulations, we conclude that a test by Thulin [1], when performed with post-dimension-reduced data, yielded the best omnibus power for detecting a difference between two high-dimensional population-mean vectors. We also illustrate the utility of our dimension-reduction method real data consisting of genetic sequences of two groups of patients with Crohn’s disease and ulcerative colitis.
关键词:Homoscedastic Covariance Matrices;Test Power;Monte Carlo Simulation;Moore-Penrose Inverse;Singular Value Decomposition