首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Influence of Fine Recycled Concrete Powder on the Compressive Strength of Self-Compacting Concrete (SCC) Using Artificial Neural Network
  • 本地全文:下载
  • 作者:Sara Boudali ; Bahira Abdulsalam ; Amir Hossein Rafiean
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2021
  • 卷号:13
  • 期号:6
  • 页码:3111
  • DOI:10.3390/su13063111
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:This paper aims to investigate the effect of fine recycled concrete powder (FRCP) on the strength of self-compacting concrete (SCC). For this purpose, a numerical artificial neural network (ANN) model was developed for strength prediction of SCC incorporating FRCP. At first, 240 experimental data sets were selected from the literature to develop the model. Approximately 60% of the database was used for training, 20% for testing, and the remaining 20% for the validation step. Model inputs included binder content, water/binder ratio, recycled concrete aggregates’ (RCA) content, percentage of supplementary cementitious materials (fly ash), amount of FRCP, and curing time. The model provided reliable results with mean square error (MSE) and regression values of 0.01 and 0.97, respectively. Additionally, to further validate the model, four experimental recycled self-compacting concrete (RSCC) samples were tested experimentally, and their properties were used as unseen data to the model. The results showed that the developed model can predict the compressive strength of RSCC with high accuracy.
国家哲学社会科学文献中心版权所有