首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:The Effect of Wave-Induced Current and Coastal Structure on Sediment Transport at the Zengwen River Mouth
  • 本地全文:下载
  • 作者:Chun-Hung Pao ; Jia-Lin Chen ; Shih-Feng Su
  • 期刊名称:Journal of Marine Science and Engineering
  • 电子版ISSN:2077-1312
  • 出版年度:2021
  • 卷号:9
  • 期号:3
  • 页码:333
  • DOI:10.3390/jmse9030333
  • 语种:English
  • 出版社:MDPI AG
  • 摘要:The mechanisms that control estuarine sediment transport are complicated due to the interaction between riverine flows, tidal currents, waves, and wave-driven currents. In the past decade, severe seabed erosion and shoreline retreat along the sandy coast of western Taiwan have raised concerns regarding the sustainability of coastal structures. In this study, ADCPs(Acoustic Doppler Current Profiler) and turbidity meters were deployed at the mouth of the Zengwen river to obtain the time series and the spatial distribution of flow velocities and turbidity during the base flow and flood conditions. A nearshore circulation model, SHORECIRC, has been adapted into a hybrid finite-difference/finite-volume, TVD (Total Variation Diminishing)-type scheme and coupled with the wave-spectrum model Simulating Waves Nearshore (SWAN). Conventional finite-difference schemes often produce unphysical oscillations when modeling coastal processes with abrupt bathymetric changes at river mouths. In contrast, the TVD-type finite volume scheme allows for robust treatment of discontinuities through the shock-capturing mechanism. The model reproduces water levels, waves, currents observed at the mouth of the Zengwen River reasonably well. The simulated residual sediment transport patterns demonstrate that the transport process at the river mouth is dominated by the interaction of the bathymetry and wave-induced currents when the riverine discharge was kept in reservoirs. The offshore residual transport causes erosion at the northern part of the river mouth, and the onshore residual transport causes accretion in the ebb tidal shoals around the center of the river mouth. The simulated morphological evolution displays significant changes on shallower deltas. The location with significant sea bed changes is consistent with the spot in which severe erosion occurred in recent years. Further analysis of morphological evolution is also discussed to identify the role of coastal structures, for example, the extension of the newly constructed groins near the river mouth.
国家哲学社会科学文献中心版权所有