摘要:This research investigates the static and cyclic characteristics of recycled glass (RG) as a supplementary material with recycled concrete aggregate (RCA) in the rail track capping layer. RG was blended by-weight with RCA in 10% increments up to 50% RG content. A performance-based laboratory testing scheme was designed according to the field loading conditions of capping layers in rail tracks. Basic geotechnical properties of RG + RCA blends were evaluated through their particle size distribution, compaction properties, and California bearing ratio. Effect of flooding was assessed with one-dimensional static and cyclic compression tests. Multistage triaxial compression tests were performed to determine the effect of RG content on shear strength parameters. A new repeated loading triaxial testing protocol was introduced for railway capping layer materials to assess the stiffness of RG blends to cyclic loading. Long term performance of samples also was evaluated through multistage cyclic permanent deformation tests. The shakedown concept was used to assess the permanent deformation results of RG + RCA samples. Results indicated that RG can be used effectively as a supplementary geomaterial in construction of rail track substructure.