摘要:DOI: 10.12957/cadest.2020.55671 A taxa de Churn, ou simplesmente Churn, calcula o número de usuários que se desconectam dos serviços de uma empresa em um período de tempo específico. Para alguns setores, esta é uma métrica básica para avaliar o sucesso do negócio, já que apresenta impacto direto no faturamento. Neste trabalho, projeta-se a curto prazo o Churn de uma empresa de e-commerce com base no histórico de seus dados. Para isso, utilizam-se as séries temporais para a previsão desses dados, o modelo Autorregressivo Integrado Médias Móveis (ARIMA). O trabalho passou por todas as etapas do ciclo iterativo de um processo de previsão dos dados, começando do estudo e análise da base de dados, passando pela escolha e validação dos parâmetros do modelo até chegar a projeção dos dados. O teste Dickey-Fuller mostrou que a série é estacionária, o melhor modelo encontrado foi o AR(1) e os resíduos seguem uma distribuição normal.