首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering
  • 本地全文:下载
  • 作者:Ri‐Gui Zhou ; Wei Wang
  • 期刊名称:ETRI Journal
  • 印刷版ISSN:1225-6463
  • 电子版ISSN:2233-7326
  • 出版年度:2020
  • 卷号:43
  • 期号:1
  • 页码:74-81
  • DOI:10.4218/etrij.2019-0336
  • 语种:English
  • 出版社:Electronics and Telecommunications Research Institute
  • 摘要:The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.
国家哲学社会科学文献中心版权所有