期刊名称:ISPRS International Journal of Geo-Information
电子版ISSN:2220-9964
出版年度:2021
卷号:10
期号:3
页码:151
DOI:10.3390/ijgi10030151
语种:English
出版社:MDPI AG
摘要:One of the most important challenges of volunteered geographic information (VGI) is the quality assessment. Existing methods of VGI quality assessment, either assess the quality by comparing a reference map with the VGI map or deriving the quality from the metadata. The first approach does not work for a real-time scenario and the latter delivers approximate values of the quality. Internet of Things (IoT) networks provide real-time observations for environment monitoring. Moreover, they publish more precise information than VGI. This paper introduces a method to assess the quality of VGI in real-time using IoT observations. The proposed method filters sensor observation outliers in the first step. Then it matches sensors and volunteers’ relationships in terms of location, time, and measurement type similarity using a hypergraph model. Then the quality of matched data is assessed by calculating positional and attribute accuracy. To evaluate the method, VGI data of the water level and quality in Tarashk–Bakhtegan–Maharlou water basin is studied. A VGI quality map of the data is assessed by a referenced authoritative map. The output of this step is a VGI quality map, which was used as a reference to check the proposed method quality. Then this reference VGI quality map and the proposed method VGI quality map are compared to assess positional and attribute accuracy. Results demonstrated that 76% of the method results have less than 20 m positional error (i.e., difference with the reference VGI quality map). Additionally, more than 92% of the proposed method VGI data have higher than 90% attribute accuracy in terms of similarity with the reference VGI quality map. These findings support the notion that the proposed method can be used to assess VGI quality in real-time.