首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Combining system identification with reinforcement learning-based MPC
  • 本地全文:下载
  • 作者:Andreas B. Martinsen ; Anastasios M. Lekkas ; Sébastien Gros
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:8130-8135
  • DOI:10.1016/j.ifacol.2020.12.2294
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we propose and compare methods for combining system identification (SYSID) and reinforcement learning (RL) in the context of data-driven model predictive control (MPC). Assuming a known model structure of the controlled system, and considering a parametric MPC, the proposed approach simultaneously: a) Learns the parameters of the MPC using RL in order to optimize performance, and b) fits the observed model behaviour using SYSID. Six methods that avoid conflicts between the two optimization objectives are proposed and evaluated using a simple linear system. Based on the simulation results, hierarchical, parallel projection, nullspace projection, and singular value projection achieved the best performance.
  • 关键词:KeywordsReinforcement LearningModel predictive controlSystem identification
国家哲学社会科学文献中心版权所有