摘要:AbstractThis paper studies the application of economic model predictive control (MPC) to snake robot locomotion. The proposed MPC algorithm integrates the gait pattern creation into the closed loop by maximizing the forward snake velocity. We consider both purely planar locomotion as well as obstacle-aided locomotion. A compliant obstacle-snake contact model is introduced, rendering the interaction dynamics considered in the optimal control problem smooth. We illustrate the efficacy of the scheme by numerical simulations. The emerging gait patterns are undulatory and can make simultaneous use of anisotropic ground friction and obstacles.