首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Data-driven surrogate models for LTI systems via saddle-point dynamics ⁎
  • 本地全文:下载
  • 作者:Tim Martin ; Anne Koch ; Frank Allgöwer
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:953-958
  • DOI:10.1016/j.ifacol.2020.12.1261
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractFor the analysis, simulation, and controller design of large-scale systems, a surrogate model with small complexity is mostly required. A standard approach to determine such a model is given by modelling the system and applying model-order-reduction techniques. Contrary, we propose a data-driven approach, where the surrogate model of the input-output behaviour of an LTI system is determined from data without modelling the system beforehand. Moreover, we provide a guaranteed bound on the maximal error between the system and the surrogate model in case of noise-free measurements. We analyse the stability and convergence of the presented schemes and apply them on a benchmark system from the model-order-reduction literature.
  • 关键词:Keywordsiterative methodsreduced-order modelsinput-output methodslearning algorithmsgradient methods
国家哲学社会科学文献中心版权所有