首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Deep Learning and System Identification ⁎
  • 本地全文:下载
  • 作者:Lennart Ljung ; Carl Andersson ; Koen Tiels
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:1175-1181
  • DOI:10.1016/j.ifacol.2020.12.1329
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractDeep learning is a topic of considerable interest today. Since it deals with estimating - or learning - models, there are connections to the area of System Identification developed in the Automatic Control community. Such connections are explored and exploited in this contribution. It is stressed that common deep nets such as feedforward and cascadeforward nets are nonlinear ARX (NARX) models, and can thus be easily incorporated in System Identification code and practice. The case of LSTM nets is an example of NonLinear State-Space (NLSS) models.
  • 关键词:KeywordsModel structureBias/Variance Trade-offModel ValidationLSTMCascadeforwardnetDeep nets
国家哲学社会科学文献中心版权所有