首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Two-Stage Robot Controller Auto-Tuning Methodology for Trajectory Tracking Applications
  • 本地全文:下载
  • 作者:Loris Roveda ; Marco Forgione ; Dario Piga
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:8724-8731
  • DOI:10.1016/j.ifacol.2020.12.276
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractAutonomy is increasingly demanded of industrial manipulators. Robots have to be capable of regulating their behavior to different operational conditions, without requiring high time/resource-consuming human intervention. Achieving an automated tuning of the control parameters of a manipulator is still a challenging task. This paper addresses the problem of automated tuning of the manipulator controller for trajectory tracking. A Bayesian optimization algorithm is proposed to tune firstly the low-level controller parameters (i.e., robot dynamics compensation), then the high-level controller parameters (i.e., the joint PID gains), providing a two-stage robot controller auto-tuning methodology. In both the optimization phases, the algorithm adapts the control parameters through a data-driven procedure, optimizing a user-defined trajectory tracking cost. Safety constraints ensuring, e.g., closed-loop stability and bounds on the maximum joint position errors, are also included. The performance of the proposed approach is demonstrated on a torque-controlled 7-degree-of-freedom FRANKA Emika robot manipulator. The 4 robot dynamics parameters (i.e., 4 link-mass parameters) are tuned in 40 iterations, while the robot control parameters (i.e., 21 PID gains) are tuned in 90 iterations. Comparable trajectory tracking-errors results with respect to the FRANKA Emika embedded position controller are achieved.
  • 关键词:KeywordsIndustrial robotsrobot controlrobot dynamicsparameter optimizationparameter identificationsystem identification
国家哲学社会科学文献中心版权所有