首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Active Learning for Linear Parameter-Varying System Identification ⁎
  • 本地全文:下载
  • 作者:Robert Chin ; Alejandro I. Maass ; Nalika Ulapane
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:989-994
  • DOI:10.1016/j.ifacol.2020.12.1274
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractActive learning is proposed for selection of the next operating points in the design of experiments, for identifying linear parameter-varying systems. We extend existing approaches found in literature to multiple-input multiple-output systems with a multivariate scheduling parameter. Our approach is based on exploiting the probabilistic features of Gaussian process regression to quantify the overall model uncertainty across locally identified models. This results in a flexible framework which accommodates for various techniques to be applied for estimation of local linear models and their corresponding uncertainty. We perform active learning in application to the identification of a diesel engine air-path model, and demonstrate that measures of model uncertainty can be successfully reduced using the proposed framework.
  • 关键词:KeywordsMachine learningSystem identificationParameter estimationUncertaintyDiesel engines
国家哲学社会科学文献中心版权所有