首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Inexact Adjoint-based SQP Algorithm for Real-Time Stochastic Nonlinear MPC
  • 本地全文:下载
  • 作者:Xuhui Feng ; Stefano Di Cairano ; Rien Quirynen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:6529-6535
  • DOI:10.1016/j.ifacol.2020.12.068
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents a real-time algorithm for stochastic nonlinear model predictive control (NMPC). The optimal control problem (OCP) involves a linearization based covariance matrix propagation to formulate the probabilistic chance constraints. Our proposed solution approach uses a tailored Jacobian approximation in combination with an adjoint-based sequential quadratic programming (SQP) method. The resulting algorithm allows the numerical elimination of the covariance matrices from the SQP subproblem, while ensuring Newton-type local convergence properties and preserving the block-sparse problem structure. It allows a considerable reduction of the computational complexity and preserves the positive definiteness of the covariance matrices at each iteration, unlike an exact Jacobian-based implementation. The realtime feasibility and closed-loop control performance of the proposed algorithm are illustrated on a case study of an autonomous driving application subject to external disturbances.
  • 关键词:KeywordsOptimization algorithmsStochastic model predictive control
国家哲学社会科学文献中心版权所有