首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:Fault Prognostics of Rolling Bearings Using a Hybrid Approach ⁎
  • 本地全文:下载
  • 作者:Murilo Osorio Camargos ; Iury Bessa ; Marcos Flávio Silveira Vasconcelos D’Angelo
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:4082-4087
  • DOI:10.1016/j.ifacol.2020.12.2435
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents a two-phase hybrid prognostics approach; in the first phase, the model’s parameters are estimated using available training data in the least squares sense using the Levenberg-Marquardt algorithm. The second phase consists of using a particle filter to update the knowledge acquired so far and to predict future states of the system using in the Bayesian sense. The approach is used for an accelerated ball bearing data set, the PRONOSTIA platform, where a general fractional polynomial model is proposed as degradation model. The results of the Remaining Useful Life estimation are compared with another work in the literature, indicating its suitability and competitiveness for prognostics in this data set.
  • 关键词:KeywordsPrognosticshealth managementremaining useful lifeparticle filterhybrid prognosticsaccelerated ball bearings
国家哲学社会科学文献中心版权所有