首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Model-based adaptive filtering of harmonic perturbations applied to high-frequency noninvasive valvometry ⁎
  • 本地全文:下载
  • 作者:Nelson F. Barroso ; Rosane Ushirobira ; Denis Efimov
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:16715-16720
  • DOI:10.1016/j.ifacol.2020.12.1120
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, a model-based adaptive filter is used to suppress electrical noise in a high-frequency noninvasive valvometry device, which is part of an autonomous biosensor system using bivalve mollusks valve-activity measurements for ecological monitoring purposes. The proposed model-based adaptive filter uses the dynamic regressor extension and mixing method to allow a decoupled estimation of the parameters. Once the desired regression form of the output model is obtained, a fixed-time estimation approach is used to identify its parameters. By applying these two techniques, a flexible filter structure is obtained with the property of retaining the major relevant components of interest of the original valve-activity signals, even in the case when the unwanted signal frequency components are in the same frequency range as the useful variables.
  • 关键词:KeywordsAdaptive filteringFault detectionParameter identificationBiosensorsEcological monitoring
国家哲学社会科学文献中心版权所有