首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Shape-Based Nonlinear Model Reduction for 1D Conservation Laws
  • 本地全文:下载
  • 作者:Denis Nikitin ; Carlos Canudas-de-Wit ; Paolo Frasca
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:5309-5314
  • DOI:10.1016/j.ifacol.2020.12.1216
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present a novel method for model reduction of one-dimensional conservation law to the dynamics of the parameters describing the approximate shape of the solution. Depending on the parametrization, each parameter has a well-defined physical meaning. The obtained ODE system can be used for the estimation and control purposes. The model reduction is performed by minimizing the divergence of flows between the original and reduced systems, and we show that this is equivalent to the minimization of the Wasserstein distance derivative. The method is then tested on the heat equation and on the LWR (Lighthill-Whitham-Richards) model for vehicle traffic.
  • 关键词:KeywordsModel reductionpartial differential equationstraffic control
国家哲学社会科学文献中心版权所有