首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:An Auto-tuning LQR based on Correlation Analysis
  • 本地全文:下载
  • 作者:Xujiang Huang ; Pu Li
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:7148-7153
  • DOI:10.1016/j.ifacol.2020.12.525
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we present an auto-tuning method for Linear Quadratic Regulator (LQR) based on correlation analysis. Unlike previous studies which focused on LQR tuning strategies exclusively by evaluating the control performance, we propose to explore the explicit relationship between the model and weighting parameters in LQR. The objective of this paper is twofold: (1) we introduce an approach to the identification and quantification of the correlation between a model parameter and a weighting parameter in LQR; (2) an auto-tuning method is worked out which is explicitly related to the variation of the model parameter. As a result, an optimal value of the weighting parameter can be effectively determined and, in the meantime, the parameter variation estimated. Through the numerical example, we demonstrate the effectiveness of the proposed auto-tuning method in restoring the control performance under unknown parameter variations.
  • 关键词:KeywordsLQRoptimal controlauto-tuningcorrelation analysis
国家哲学社会科学文献中心版权所有