首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Improved Visual-Inertial Localization for Low-cost Rescue Robots
  • 本地全文:下载
  • 作者:Xiaoling Long ; Qingwen Xu ; Yijun Yuan
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:9709-9715
  • DOI:10.1016/j.ifacol.2020.12.2624
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper improves visual-inertial systems to boost the localization accuracy for low-cost rescue robots. When robots traverse on rugged terrain, the performance of pose estimation suffers from big noise on the measurements of the inertial sensors due to ground contact forces, especially for low-cost sensors. Therefore, we proposeThreshold-basedandDynamic Time Warping-basedmethods to detect abnormal measurements and mitigate such faults. The two methods are embedded into the popular VINS-Mono system to evaluate their performance. Experiments are performed on simulation and real robot data, which show that both methods increase the pose estimation accuracy. Moreover, theThreshold-basedmethod performs better when the noise is small and theDynamic Time Warping-basedone shows greater potential on large noise.
  • 关键词:KeywordsRoboticsFault DetectionState EstimationInertial LocalizationRescue Robot
国家哲学社会科学文献中心版权所有