首页    期刊浏览 2024年11月15日 星期五
登录注册

文章基本信息

  • 标题:Reinforcement Learning and Trajectory Planning based on Model Approximation with Neural Networks applied to Transition Problems
  • 本地全文:下载
  • 作者:Max Pritzkoleit ; Carsten Knoll ; Klaus Röbenack
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:1581-1587
  • DOI:10.1016/j.ifacol.2020.12.2193
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we use a multilayer neural network to approximate the dynamics of nonlinear (mechanical) control systems. Furthermore, these neural network models are combined with offline trajectory planning, to form a model-based reinforcement learning (RL) algorithm, suitable for transition problems of nonlinear dynamical systems. We evaluate the algorithm on the swing-up of the cart-pole benchmark system and observe a significant performance gain in terms of data efficiency compared to a state-of-the-art model-free RL method (Deep Deterministic Policy Gradient (DDPG)). Additionally, we present first experimental results on a cart-triple-pole system test bench. For a simple transition problem, the proposed algorithm shows a good controller performance.
  • 关键词:KeywordsTrajectory planningReinforcement learningLearning controlNeural-network modelsModel approximationTracking control
国家哲学社会科学文献中心版权所有