首页    期刊浏览 2024年11月06日 星期三
登录注册

文章基本信息

  • 标题:Task Decomposition for MPC: A Computationally Efficient Approach for Linear Time-Varying Systems ⁎
  • 本地全文:下载
  • 作者:Charlott Vallon ; Francesco Borrelli
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:4240-4245
  • DOI:10.1016/j.ifacol.2020.12.2574
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractA Task Decomposition method for iterative learning Model Predictive Control (TDMPC) for linear time-varying systems is presented. We consider the availability of state-input trajectories which solve an original taskτ1, and design a feasible MPC policy for a new task,τ2, using stored data fromτ1. Our approach applies to tasksτ2which are composed of subtasks contained inτ1. In this paper we formally define the task decomposition problem, and provide a feasibility proof for the resulting policy. The proposed algorithm reduces the computational burden for linear time-varying systems with piecewise convex constraints. Simulation results demonstrate the improved efficiency of the proposed method on a robotic path-planning task.
  • 关键词:KeywordsData-based controlIterativeRepetitive Learning controlLinear Model Predictive ControlConvex Optimization
国家哲学社会科学文献中心版权所有