首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A Youla-Kucera Parametrization for Data-Driven Controllers Tuning ⁎
  • 本地全文:下载
  • 作者:Freddy Valderrama ; Fredy Ruiz ; Antonio Vicino
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:3989-3994
  • DOI:10.1016/j.ifacol.2020.12.2262
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe Youla-Kucera parametrization is a fundamental result in system theory, very useful when designing model-based controllers. In this paper, this parametrization is employed to solve the controller design from data problem, without requiring a process model. It is shown that employing the proposed controller structure it is possible to achieve more stringent closed-loop performances than previous works in literature, maintaining a criterion to estimate the closed-loop stability. The developed design methodology does not imply a plant identification step and the solution can be obtained by least-squares algorithms in the case of stochastic additive noise. The designed solution is evaluated through Monte Carlo simulations for the regulation problem of an under-damped system.
  • 关键词:KeywordsData-based controlIdentification for controlUncertain systemsParametric optimization
国家哲学社会科学文献中心版权所有