摘要:AbstractCascaded controller tuning is a multi-step iterative procedure that needs to be performed routinely upon maintenance and modification of mechanical systems. An automated data-driven method for cascaded controller tuning based on Bayesian optimization is proposed. The method is tested on a linear axis drive, modeled using a combination of first principles model and system identification. A custom cost function based on performance indicators derived from system data at different candidate configurations of controller parameters is modeled by a Gaussian process. It is further optimized by minimization of an acquisition function which serves as a sampling criterion to determine the subsequent candidate configuration for experimental trial and improvement of the cost model iteratively, until a minimum according to a termination criterion is found. This results in a data-efficient procedure that can be easily adapted to varying loads or mechanical modifications of the system. The method is further compared to several classical methods for auto-tuning, and demonstrates higher performance according to the defined data-driven performance indicators. The influence of the training data on a cost prior on the number of iterations required to reach optimum is studied, demonstrating the efficiency of the Bayesian optimization tuning method.