首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Moment Propagation of Discrete-Time Stochastic Polynomial Systems using Truncated Carleman Linearization
  • 本地全文:下载
  • 作者:Sasinee Pruekprasert ; Toru Takisaka ; Clovis Eberhart
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:14462-14469
  • DOI:10.1016/j.ifacol.2020.12.1447
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose a method to compute an approximation of the moments of a discrete-time stochastic polynomial system. We use the Carleman linearization technique to transform this finite-dimensional polynomial system into an infinite-dimensional linear one. After taking expectation and truncating the induced deterministic dynamics, we obtain a finite-dimensional linear deterministic system, which we then use to iteratively compute approximations of the moments of the original polynomial system at different time steps. We provide upper bounds on the approximation error for each moment and show that, for large enough truncation limits, the proposed method precisely computes moments for sufficiently small degrees and numbers of time steps. We use our proposed method for safety analysis to compute bounds on the probability of the system state being outside a given safety region. Finally, we illustrate our results on two concrete examples, a stochastic logistic map and a vehicle dynamics under stochastic disturbance.
  • 关键词:KeywordsStochastic systemsnonlinear systemsprobabilistic safety analysismoment computationCarleman linearization
国家哲学社会科学文献中心版权所有