首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Online Output-Feedback Optimal Control of Linear Systems Based on Data-Driven Adaptive Learning ⁎
  • 本地全文:下载
  • 作者:Jun Zhao ; Jing Na ; Guanbin Gao
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:1596-1601
  • DOI:10.1016/j.ifacol.2020.12.2201
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper proposes a new approach to solve the output-feedback optimal control for linear systems. A modified algebraic Riccati equation (MARE) is constructed by investigating the corresponding relationship with the state-feedback optimal control. To solve the derived MARE, an online data-driven adaptive learning is designed, where the vectorization operation and Kronecker’s product are applied to reformulate the output Lyapunov function. Consequently, only the measurable system input and output are used to derive the solution of the MARE. In this case, the output-feedback optimal control solution can be obtained in an online manner without resorting to the unknown system states. Simulation results are provided to demonstrate the efficacy of the suggested method.
  • 关键词:KeywordsAdaptive optimal controloutput-feedback controladaptive controldata-driven learningKronecker’s product
国家哲学社会科学文献中心版权所有