首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Constrained Gaussian Process Learning for Model Predictive Control ⁎
  • 本地全文:下载
  • 作者:Janine Matschek ; Andreas Himmel ; Kai Sundmacher
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:971-976
  • DOI:10.1016/j.ifacol.2020.12.1269
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractMany control tasks can be formulated as tracking problems of a known or unknown reference signal. examples are motion compensation in collaborative robotics, the synchronisation of oscillations for power systems or the reference tracking of recipes in chemical process operation. Both the tracking performance and the stability of the closed-loop system depend strongly on two factors: Firstly, they depend on whether the future reference signal required for tracking is known, and secondly, whether the system can track the reference at all. This paper shows how to use machine learning, i.e. Gaussian processes, to learn a reference from (noisy) data while guaranteeing trackability of the modified desired reference predictions within the framework of model predictive control. Guarantees are provided by adjusting the hyperparameters via a constrained optimisation. Two specific scenarios, i.e. asymptotically constant and periodic REFERENCES, are discussed.
  • 关键词:KeywordsGaussian processestrajectory trackinglearning supported model predictive control
国家哲学社会科学文献中心版权所有