首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A Sampling-and-Discarding Approach to Stochastic Model Predictive Control for Renewable Energy Systems ⁎
  • 本地全文:下载
  • 作者:Balázs Cs. Csáji ; Krisztián B. Kis ; András Kovács
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:7142-7147
  • DOI:10.1016/j.ifacol.2020.12.523
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe paper applies the scenario approach to stochastic model predictive control for renewable energy systems. First, the controllable and the (quasi-periodic) uncontrollable parts are decomposed. The latter is modeled by a Box-Jenkins system with appropriately chosen inputs. For the controllable part, a linear state space model is used with an affine state-feedback controller. Several numerical experiments are presented on a public lighting microgrid, e.g., about forecasting the energy balance, the effects of various controller parametrizations, reoptimization frequencies, and discarding unfavorable scenarios. The results indicate that even a low order, time-independent controller with a slow reoptimization frequency can be efficient.
  • 关键词:Keywordsstochastic model predictive controlchance-constrained optimizationpartially controllable systemsrandomized methodsscenario approachrenewable energy system
国家哲学社会科学文献中心版权所有