摘要:AbstractThis paper establishes a methodology based on linear matrix inequalities (LMIs) to design a shiftingH∞linear parameter varying (LPV) state-feedback controller for systems affected by time-varying input saturations. By means of the shifting paradigm, the instantaneous saturation values are linked to a scheduling parameter vector. Then, the disturbance rejection is dealt with the quadratic boundedness concept and the shiftingH∞methodology. The design conditions are obtained within the LPV framework using ellipsoidal invariant sets, thus obtaining an LMI-based feasibility problem that can be solved via available solvers. Finally, the main characteristics of the proposed approach are validated by means of an illustrative example.