首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:TS-MPC for Autonomous Vehicle using a Learning Approach ⁎
  • 本地全文:下载
  • 作者:Eugenio Alcala ; Olivier Sename ; Vicenç Puig
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:15110-15115
  • DOI:10.1016/j.ifacol.2020.12.2034
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, Model Predictive Control (MPC) and Moving Horizon Estimator (MHE) strategies using a data-driven approach to learn a Takagi-Sugeno (TS) representation of the vehicle dynamics are proposed to solve autonomous driving control problems in real-time. To address the TS modeling, we use the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach to obtain a set of polytopic-based linear representations as well as a set of membership functions relating in a non-linear way the different linear subsystems. The proposed control approach is provided by racing-based references of an external planner and estimations from the MHE offering a high driving performance in racing mode. The control-estimation scheme is tested in a simulated racing environment to show the potential of the proposed approaches.
  • 关键词:KeywordsTakagi-Sugeno approachModel predictive controlAutonomous vehiclesData-driven identificationLearning control
国家哲学社会科学文献中心版权所有