首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Optimal Transport Based Filtering with Nonlinear State Equality Constraints ⁎
  • 本地全文:下载
  • 作者:Niladri Das ; Raktim Bhattacharya
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:2373-2378
  • DOI:10.1016/j.ifacol.2020.12.035
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this work we propose a framework to address the issue of state dependent nonlinear equality-constrained state estimation using Bayesian filtering. This framework is constructed specifically for a linear approximation of Bayesian filtering that uses the theory of Optimal Transport. As a part of this framework, we present three traditionally-used nonlinear equality constraint-preserving algorithms coupled with the Optimal Transport based filter: the equality-constrained Optimal Transport filter, the projected Optimal Transport filter, and the measurement-augmented Optimal Transport filter. In cases where the nonlinear equality-constraints represent an arbitrary convex manifold, we show that the re-sampling step of Optimal Transport filter, can generate initial samples for filtering, from any probability distribution function defined on this manifold. We show numerical results using our proposed framework.
  • 关键词:KeywordsNon-linear systemsestimationmonitoringsamplingoptimization
国家哲学社会科学文献中心版权所有