首页    期刊浏览 2025年04月30日 星期三
登录注册

文章基本信息

  • 标题:Fault diagnosis integrating physical insights into a data-driven classifier
  • 本地全文:下载
  • 作者:M. Amine Atoui ; A. Cohen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2020
  • 卷号:53
  • 期号:2
  • 页码:13625-13630
  • DOI:10.1016/j.ifacol.2020.12.859
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe main goal of this paper is to present a new method for fault detection and isolation with a Bayesian network (BN). This method combines model-based and data-driven frameworks to detect and diagnose single, multiple and unknown faults. We propose an original BN structure with new decision rules. These rules are constructed to take advantage of the prior model knowledge and the available data. Our network presents new perspective to detect unknown fault and outperforms some recent work proposed in Bayesian networks literature. The performance of the method is illustrated on a heating water process simulating several scenarios of operating conditions.
  • 关键词:KeywordsBayesian networksstatistical testssignature matrixunknown faults
国家哲学社会科学文献中心版权所有